A Binomial Heap is a set of Binomial Trees where each Binomial Tree follows Min Heap property. And there can be at most one Binomial Tree of any degree. It is explained to depth in the bellow illustration as follows:
Illustration:
There are 2 binomial heaps been depicted below out here saw follows:
Read More: 1Z0-819: Oracle Java SE 11 Developer
BINOMIAL HEAP 1
12------------10--------------------20
/ \ / | \
15 50 70 50 40
| / | |
30 80 85 65
|
100
A Binomial Heap with 13 nodes. It is a collection of 3
Binomial Trees of orders 0, 2 and 3 from left to right.
BINOMIAL HEAP 2
10--------------------20
/ \ / | \
15 50 70 50 40
| / | |
30 80 85 65
|
100
A Binomial Heap with 12 nodes. It is a collection of 2
Binomial Trees of orders 2 and 3 from left to right.
Let us now do discuss the binary representation of a number and binomial heaps. A Binomial Heap with n nodes has the number of Binomial Trees equal to the number of set bits in the binary representation of n.
For example, let n be 13, there are 3 set bits in the binary representation of n (00001101), hence 3 Binomial Trees. We can also relate the degree of these Binomial Trees with positions of set bits. With this relation, we can conclude that there are O(Logn) Binomial Trees in a Binomial Heap with ‘n’ nodes.
Operations of the binomial heap are as follows:
1. Insert(K): Insert an element K into the binomial heap
2. Delete(k): Deletes the element k from the heap
3. getSize(): Returns the size of the heap
4. makeEmpty(): Makes the binomial heap empty by deleting all the elements
5. checkEmpty(): Check if the binomial heap is empty or not
6. displayHeap(): Prints the binomial heap
Implementation:
Example
// Java Program to Implement Binomial Heap
// Importing required classes
import java.io.*;
// Class 1
// BinomialHeapNode
class BinomialHeapNode {
int key, degree;
BinomialHeapNode parent;
BinomialHeapNode sibling;
BinomialHeapNode child;
// Constructor of this class
public BinomialHeapNode(int k)
{
key = k;
degree = 0;
parent = null;
sibling = null;
child = null;
}
// Method 1
// To reverse
public BinomialHeapNode reverse(BinomialHeapNode sibl)
{
BinomialHeapNode ret;
if (sibling != null)
ret = sibling.reverse(this);
else
ret = this;
sibling = sibl;
return ret;
}
// Method 2
// To find minimum node
public BinomialHeapNode findMinNode()
{
// this keyword refers to current instance itself
BinomialHeapNode x = this, y = this;
int min = x.key;
while (x != null) {
if (x.key < min) {
y = x;
min = x.key;
}
x = x.sibling;
}
return y;
}
// Method 3
// To find node with key value
public BinomialHeapNode findANodeWithKey(int value)
{
BinomialHeapNode temp = this, node = null;
while (temp != null) {
if (temp.key == value) {
node = temp;
break;
}
if (temp.child == null)
temp = temp.sibling;
else {
node = temp.child.findANodeWithKey(value);
if (node == null)
temp = temp.sibling;
else
break;
}
}
return node;
}
// Method 4
// To get the size
public int getSize()
{
return (
1 + ((child == null) ? 0 : child.getSize())
+ ((sibling == null) ? 0 : sibling.getSize()));
}
}
// Class 2
// BinomialHeap
class BinomialHeap {
// Member variables of this class
private BinomialHeapNode Nodes;
private int size;
// Constructor of this class
public BinomialHeap()
{
Nodes = null;
size = 0;
}
// Checking if heap is empty
public boolean isEmpty() { return Nodes == null; }
// Method 1
// To get the size
public int getSize() { return size; }
// Method 2
// Clear heap
public void makeEmpty()
{
Nodes = null;
size = 0;
}
// Method 3
// To insert
public void insert(int value)
{
if (value > 0) {
BinomialHeapNode temp
= new BinomialHeapNode(value);
if (Nodes == null) {
Nodes = temp;
size = 1;
}
else {
unionNodes(temp);
size++;
}
}
}
// Method 4
// To unite two binomial heaps
private void merge(BinomialHeapNode binHeap)
{
BinomialHeapNode temp1 = Nodes, temp2 = binHeap;
while ((temp1 != null) && (temp2 != null)) {
if (temp1.degree == temp2.degree) {
BinomialHeapNode tmp = temp2;
temp2 = temp2.sibling;
tmp.sibling = temp1.sibling;
temp1.sibling = tmp;
temp1 = tmp.sibling;
}
else {
if (temp1.degree < temp2.degree) {
if ((temp1.sibling == null)
|| (temp1.sibling.degree
> temp2.degree)) {
BinomialHeapNode tmp = temp2;
temp2 = temp2.sibling;
tmp.sibling = temp1.sibling;
temp1.sibling = tmp;
temp1 = tmp.sibling;
}
else {
temp1 = temp1.sibling;
}
}
else {
BinomialHeapNode tmp = temp1;
temp1 = temp2;
temp2 = temp2.sibling;
temp1.sibling = tmp;
if (tmp == Nodes) {
Nodes = temp1;
}
else {
}
}
}
}
if (temp1 == null) {
temp1 = Nodes;
while (temp1.sibling != null) {
temp1 = temp1.sibling;
}
temp1.sibling = temp2;
}
else {
}
}
// Method 5
// For union of nodes
private void unionNodes(BinomialHeapNode binHeap)
{
merge(binHeap);
BinomialHeapNode prevTemp = null, temp = Nodes,
nextTemp = Nodes.sibling;
while (nextTemp != null) {
if ((temp.degree != nextTemp.degree)
|| ((nextTemp.sibling != null)
&& (nextTemp.sibling.degree
== temp.degree))) {
prevTemp = temp;
temp = nextTemp;
}
else {
if (temp.key <= nextTemp.key) {
temp.sibling = nextTemp.sibling;
nextTemp.parent = temp;
nextTemp.sibling = temp.child;
temp.child = nextTemp;
temp.degree++;
}
else {
if (prevTemp == null) {
Nodes = nextTemp;
}
else {
prevTemp.sibling = nextTemp;
}
temp.parent = nextTemp;
temp.sibling = nextTemp.child;
nextTemp.child = temp;
nextTemp.degree++;
temp = nextTemp;
}
}
nextTemp = temp.sibling;
}
}
// Method 6
// To return minimum key
public int findMinimum()
{
return Nodes.findMinNode().key;
}
// Method 7
// To delete a particular element */
public void delete(int value)
{
if ((Nodes != null)
&& (Nodes.findANodeWithKey(value) != null)) {
decreaseKeyValue(value, findMinimum() - 1);
extractMin();
}
}
// Method 8
// To decrease key with a given value */
public void decreaseKeyValue(int old_value,
int new_value)
{
BinomialHeapNode temp
= Nodes.findANodeWithKey(old_value);
if (temp == null)
return;
temp.key = new_value;
BinomialHeapNode tempParent = temp.parent;
while ((tempParent != null)
&& (temp.key < tempParent.key)) {
int z = temp.key;
temp.key = tempParent.key;
tempParent.key = z;
temp = tempParent;
tempParent = tempParent.parent;
}
}
// Method 9
// To extract the node with the minimum key
public int extractMin()
{
if (Nodes == null)
return -1;
BinomialHeapNode temp = Nodes, prevTemp = null;
BinomialHeapNode minNode = Nodes.findMinNode();
while (temp.key != minNode.key) {
prevTemp = temp;
temp = temp.sibling;
}
if (prevTemp == null) {
Nodes = temp.sibling;
}
else {
prevTemp.sibling = temp.sibling;
}
temp = temp.child;
BinomialHeapNode fakeNode = temp;
while (temp != null) {
temp.parent = null;
temp = temp.sibling;
}
if ((Nodes == null) && (fakeNode == null)) {
size = 0;
}
else {
if ((Nodes == null) && (fakeNode != null)) {
Nodes = fakeNode.reverse(null);
size = Nodes.getSize();
}
else {
if ((Nodes != null) && (fakeNode == null)) {
size = Nodes.getSize();
}
else {
unionNodes(fakeNode.reverse(null));
size = Nodes.getSize();
}
}
}
return minNode.key;
}
// Method 10
// To display heap
public void displayHeap()
{
System.out.print("\nHeap : ");
displayHeap(Nodes);
System.out.println("\n");
}
private void displayHeap(BinomialHeapNode r)
{
if (r != null) {
displayHeap(r.child);
System.out.print(r.key + " ");
displayHeap(r.sibling);
}
}
}
// Class 3
// Main class
public class OJC {
public static void main(String[] args)
{
// Make object of BinomialHeap
BinomialHeap binHeap = new BinomialHeap();
// Inserting in the binomial heap
// Custom input integer values
binHeap.insert(12);
binHeap.insert(8);
binHeap.insert(5);
binHeap.insert(15);
binHeap.insert(7);
binHeap.insert(2);
binHeap.insert(9);
// Size of binomial heap
System.out.println("Size of the binomial heap is "
+ binHeap.getSize());
// Displaying the binomial heap
binHeap.displayHeap();
// Deletion in binomial heap
binHeap.delete(15);
binHeap.delete(8);
// Size of binomial heap
System.out.println("Size of the binomial heap is "
+ binHeap.getSize());
// Displaying the binomial heap
binHeap.displayHeap();
// Making the heap empty
binHeap.makeEmpty();
// checking if heap is empty
System.out.println(binHeap.isEmpty());
}
}
Output
Size of the binomial heap is 7
Heap : 9 7 2 12 8 15 5
Size of the binomial heap is 5
Heap : 7 9 5 12 2
true
Source: geeksforgeeks.com